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Abstract Wireless Sensor Networks have great poten-

tial in Ubiquitous computing. However, the severe re-

source constraints of wireless sensor networks rule out

the use of many existing networking protocols and re-

quire careful design of systems that prioritizes energy

conservation over performance optimization. A key in-

frastructural problem in wireless sensor networks is lo-

calization – the problem of determining the geograph-

ical locations of nodes. Wireless Sensor Networks typi-

cally have some nodes called seeds that know their loca-

tions using Global Positioning Systems (GPS) or other

means. Non-seed nodes compute their locations by ex-

changing messages with nodes within their radio range.

Several algorithms have been proposed for localiza-

tion in different scenarios. Algorithms have been de-

signed for networks in which each node has ranging ca-

pabilities, i.e., can estimate distances to its neighbours.

Other algorithms have been proposed for networks in

which no node has such capabilities. Some algorithms

only work when nodes are static. Some other algorithms

are designed specifically for networks in which all nodes

are mobile. We propose a very general, fully distributed

localization algorithm RMCB (Range-based Monte Carlo

Boxed) for wireless sensor networks. RMCB allows nodes
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to be static or mobile and that can work with nodes that

can perform ranging as well as nodes that lack ranging

capabilities. RMCB uses a small fraction of seeds. It

makes use of the received signal strength measurements

that are available from the sensor hardware. We use

RMCB to investigate the question: “When does range-

based localization work better than range-free localiza-

tion?” We demonstrate using empirical signal strength

data from sensor hardware (Texas Instruments EZ430-

RF2500) and simulations that RMCB outperforms a

very good range-free algorithm WMCL (Weighted Monte

Carlo localization) in terms of localization error in a

number of scenarios and has a similar computational

complexity to WMCL. We also implement WMCL and

RMCB on sensor hardware and demonstrate that it out-

performs WMCL. The performance of RMCB depends

critically on the quality of range estimation. We de-

scribe the limitations of our range estimation approach

and provide guidelines on when range-based localiza-

tion is preferable.

Keywords Wireless Sensor Networks · Localization ·
Ranging · Monte Carlo Sampling

1 Introduction

Wireless sensor networks (WSNs) are an emerging tech-

nology that have numerous possible applications includ-

ing many areas of personal and ubiquitous computing.

Sensor nodes can be used to build body area networks

[7], smart homes [5] and intelligent environments [14].

They are also used for a variety of monitoring applica-

tions [31,13]. WSNs are formed by small autonomous

nodes that contain a CPU, memory, battery, a wire-

less transceiver and some sensors that measure physical

attributes, e.g. temperature, velocity, light etc. These
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nodes are expected to self-organize into a coherent net-

work that can respond to queries from external users

and report about sensed phenomena. The attractive

aspects of WSNs include their low cost, great flexi-

bility and the robustness arising from the distributed

nature of the network. The proposed practical uses of

WSNs include areas such as environmental sensing [19,

32,20], industrial monitoring, military applications [18],

on-site tracking of materials [23], and security moni-

toring [18]. The design challenges for these networks

include the crippling limitations on processing, mem-

ory, battery capacity and also the likelihood of sensor

node failure. Indeed, these challenges require that sev-

eral problems that have been solved for wired and wire-

less networks be addressed again because resource con-

servation rather than performance optimization is the

primary objective for WSNs.

A key infrastructural problem in the design and de-

ployment of WSNs is localization: the estimation of the

geographical locations of sensor nodes. Location infor-

mation is essential for many applications like location

aware services [29,11] and enhanced security protection

mechanisms [34]. In addition, basic middleware services

such as routing often rely on location information like

geographic routing [17,6,8,16] and context-based rout-

ing protocols [9,12]. Recently, location aware services

have received much attention. For example, a WSN de-

ployed in hospitals can be used to keep track of pa-

tients, doctors, nurses, and medical equipment. WSNs

can be used to create responsive environments. For ex-

ample, a WSN in a museum or exhibition can guide

the visitors by providing them explanations based on

their locations. WSNs can also be used in enterprises

for locating assets and employees in and around the

workplace as well as reducing theft and loss of valuable

assets. Animal tracking and home automation for the

elderly and disabled are also examples of applications

of WSNs.

Manual localization is feasible in small networks of

static nodes. When sensor networks are large, mobile

or deployed in hostile environments, automated node

localization is required. Localization algorithms can be

centralized or distributed. In this work, we focus on

designing fully distributed algorithms that can be im-

plemented on real sensor platforms.

There are several design choices that have to be

made in building sensor networks that allow accurate

localization. The first choice pertains to whether nodes

can measure distances between each other. Given the

low cost and small size of the nodes and the need to

preserve power, many sensor nodes do not provide any

means of obtaining distance information. Therefore a

lot of research has gone into range-free localization,

or localization without any distance information. The

only information available to nodes is whether another

node is within radio range of it, and this essentially pro-

vides an upper bound on the distance between nodes.

This idea can be extended to use hop distances – or

the minimum number of hops required for a message

to travel from one node to another. In contrast, range-

based localization makes use of distance information ob-

tained in some manner, which includes using radio sig-

nal strength measurements, use of time delays of signals

and other means. In this paper, we focus on localization

using distances estimated from radio signal strengths of

received packets.

Yet another design choice is the use of local or global

coordinates. We choose the latter since it is more gen-

eral. In order to localize nodes in a global coordinate

system, a subset of the nodes (called seeds) must have

the capability to determine their locations at all times.

Non-seed nodes compute their locations by communi-

cating with other nodes. Finally, localizing static nodes

is simpler and earlier work on localization assumed that

sensors were static. Later papers proposed algorithms

that worked in the presence of node mobility.

1.1 Range-free or range-based?

There is a key question faced by WSN designers that

has not been addressed much in the literature: which

is desirable – range-free or range-based localization?

This is not a simple question, and the answer depends

on many factors. It would be natural to assume that

if ranging can be done, range-based algorithms should

yield higher localization accuracy since they use more
accurate location information. However, we describe sev-

eral factors that prevent this.

In this paper, we propose a general localization algo-

rithm RMCB that can accommodate mobile nodes and

works when some (possibly all or none) of the nodes

have ranging capability. No algorithms have been pro-

posed to work in all these scenarios to our knowledge.

RMCB is designed to make use of a unified framework

for node localization in both ad hoc and sensor net-

works. We evaluate the algorithm under a variety of

scenarios. In each scenario, a node receives location in-

formation from some or all of its neighbours (seeds and

non-seeds) and uses this information to compute its lo-

cation. We show that in each such scenario, the infor-

mation available to a node can be distilled down to a set

of constraints that the location of the node must satisfy.

These constraints would depend on whether the nodes

are mobile or not, and whether ranging is used or not.

However, the process of estimating the location is not

dependent on the specific constraints used. Seen from



Accurate Sensor Network Localization 3

this point of view, a good localization algorithm must

make good use of the constraints available to it.

In order to answer the question raised in this sub-

section, we built a simulator for RMCB and also im-

plemented it on sensor hardware. We chose very good

range-free localization algorithm called WMCL [35] for

comparison (See Section 5 for reasons for this choice)

and also implemented WMCL on our hardware. We

conducted simulation studies and experiments with sen-

sor hardware to compare the performance of RMCB and

WMCL. Our results demonstrate that RMCB outper-

forms WMCL in many scenarios. However, the perfor-

mance of RMCB depends critically on the quality of

range estimation. We describe the limitations of our

range estimation approach and provide guidelines on

when range-based localization is preferable.

1.2 Related Work

A comprehensive survey of the WSN literature on lo-

calization is beyond the scope of this paper. We refer

the reader to the surveys by Mao et al. [22], Bachrach

and Taylor [1] and by Savvides et al. [28] for a more

comprehensive overview of the literature. We only deal

with fully distributed algorithms in this paper, and re-

fer the reader to the survey by Mao et al. [22] for details

on centralized algorithms.

1.2.1 Range-based localization

Various techniques have been proposed for range-based

localization algorithms. Ward et al. [33] used Time of

Arrival of signals and Priyantha et al. [24] and Savvides

et al. [27] used Time Difference of Arrival of messages

to estimate distances. Sugano et al. [30], Bahl et al. [3]

and Bischoff et al. [4] used received signal strength

(RSS) to estimate distances. In Bahl et al. [3], distances

from 3 fixed beacons are input to a triangulation-based

algorithm for computing positions within a building. In

[4] the distance estimates are used for topology main-

tenance but localization in a global coordinate system

is not attempted. Sugano et al. [30] propose a local-

ization algorithm for mobile nodes using distance esti-

mates from static sensor nodes. Havinga et al. [10] pro-

posed a range-based algorithm based on a Monte Carlo

sampling approach. They assume that range measure-

ments are available and do not discuss where the mea-

surements come from. In addition they assume range

measurements to be single values rather than upper and

lower bounds.

1.2.2 Range-free localization

Many range-free localization algorithms have been pro-

posed in the literature. We survey only the work rele-

vant to this paper. Hu and Evans [15] presented a Monte

Carlo Sampling-based algorithm called MCL (Monte

Carlo Localization). Rudafshani and Datta [26] pro-

posed algorithms MSL and MSL*; both these algorithms

improved on MCL by using more location information.

The MCB (Monte Carlo Localization Boxed) algorithm

proposed by Baggio and Langendoen [2] improved on

the computational complexity of the algorithms men-

tioned above by using bounding boxes. Zhang et al. [35]

further improved the computational complexity and lo-

calization accuracy in algorithm WMCL (Weighted

MCL). More recently, Maclean and Datta proposed al-

gorithm Orbit [21]. Orbit uses properties of unit disk

graphs to derive stronger constraints on node locations

and this yields lower localization errors than existing al-

gorithms. Although Orbit is able to use both range-free

and range-based location information, its performance

was evaluated in [21] only for range-free localization.

1.2.3 Distance from received signal strength

There have been several attempts at constructing mod-

els that allow computation of distances from measured

signal strength, including [3,30]. We found that mea-

surements taken with our hardware did not fit any of

these models and therefore we chose a simple, intuitive

algorithm that is explained in Section 4.2.

2 Issues in range-based localization

There are two primary computational challenges in the

design of localization algorithms. The first challenge is

how to use location information of the neighbours of a

node, particularly the imprecise location estimates of

non-seed neighbours. The second challenge is the main-

tenance of one or more feasible locations of a node at

each time step. We address the first problem by deriv-

ing constraints on the set of possible locations of a node

from all available information. The second problem is

addressed by sampling points from a region generated

using the set of available constraints and filtering out

points that do not satisfy the constraints. The genera-

tion of samples and their filtering are done in a manner

very similar to WMCL [35].

2.1 Location information as constraints

Let us first assume nodes are static. For simplicity, let

us assume that radio range is a perfect circle with radius
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Fig. 1 Constraints defined by mobility
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Fig. 2 Constraints defined by ranges

r. Each node within radio range of a node is called its

neighbour ; if a node y is a neighbour of a neighbour of

x, but y is not a neighbour of x, then y is said to be a

second neighbour of x.

The key observation in the design of our algorithm

is that each piece of location and ranging information

from neighbours is a (positive) constraint on the set of

possible locations of a node. In the absence of ranging,

a node is within a circle of radius r centred at the loca-

tion of each seed neighbour. Each non-seed neighbour

m has an approximate location with a position pm and

an upper bound on the positional error εm. Therefore a

node must be within a circle centred at pm and radius

r + εm. The location of non-neighbour seeds serve as

negative information - a node cannot be in a circle of

radius r centred at the location of a non-neighbour. In

this paper we only consider first and second neighbours

of nodes to generate constraints.

Mobility can be handled by incorporating vmax (as

defined in Section 3) into the constraints. For example,

if a node knows the location of a seed neighbour at the

previous time step, it must be within a circle centred

at that location and radius r + vmax (Figure 1).

Range information is also easily incorporated. Since

distance measurements are approximate in practice, par-

ticularly when made from RSS, we assume that we are

given upper and lower bounds on each measurement.

Thus a node x is constrained to lie in an annular re-

gion defined by the location of a neighbour j and the

upper and lower bounds on the distance, i.e. if d(x, j)

is the distance between the locations of x, j, and lj , uj
are the lower and upper bounds on the distance be-

tween x, j then lj ≤ d(x, j) ≤ uj . The upper bound

(d(x, j) ≤ uj) works as a positive constraint and the

lower bound (lj ≤ d(x, j)) as a negative constraint (see

Figure 2). Uncertainties in the locations and mobility

are handled exactly as in the case of range-free infor-

mation. This way of interpreting constraints allows us

to utilize ideas used to design range-free localization

algorithms in a range-based algorithm.

It is crucial that the constraints must be consistent

– i.e., the set of points satisfying the constraints must

be non-empty, otherwise the localization algorithm fails

and a node does not find any estimates for its location.

Constraints are used to generate sample locations

that satisfy them. Since it is hard to generate only

those points that satisfy all constraints, samples are

drawn from some larger area and then filtered out if

they do not satisfy one or more constraints. An exam-

ple is shown in Figure 3.

2.2 Negative Information: Advantages and Risks

A constraint of the form “node i is not within distance

ρ of node j” is called negative information in the lit-

erature. This has been used in range-free localization

(“node i is not within radio range of j”) to increase

localization accuracy. Negative information has the po-

tential to greatly improve the accuracy of range-based

localization but it is not free of pitfalls. If negative in-

formation is too pessimistic (the distance between two

nodes is underestimated) the constraints on locations it

translates to are loose and may result in less accurate

localization. In contrast, if negative information is too

optimistic (the distance between two nodes is overes-

timated) then the constraints may be inconsistent and

no feasible locations may be found.

3 Model and assumptions

We assume all nodes to be identical, except for seeds

having self-localization ability. We assume that nodes

are deployed in some manner (perhaps randomly) on a

two-dimensional sensor field that is free of obstacles.

We assume that a (small) fraction of the nodes,

called seeds, can determine their locations at all times,

perhaps by using GPS or similar means, in a global

co-ordinate system. The other nodes do not have this

capability and must compute their locations by commu-

nicating with other nodes. We assume that nodes may

move at any speed in the range [0, vmax], and vmax is
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Fig. 3 (a) some constraints (b) the corresponding bounding boxes, (c) Sampled Points and (d) Sampled points after filtering

known to all nodes. We assume that nodes do not know

the direction or actual speed of their movement. This

assumption is made to conform with realistic networks,

in which direction and speed measurements require ex-

tra hardware and may not be very accurate. If such

information is available then our model and algorithm

can incorporate them and improve accuracy.

We assume that time is discrete and, although not

required by our algorithm, there is reasonable clock syn-

chrony among nodes. We assume for the sake of simplic-

ity that a reliable medium access control (MAC) layer

is available to us. We do not assume the presence of a

routing infrastructure for our algorithm.

3.1 Performance metrics

The primary metrics of interest to us are average lo-

calization error and sampling efficiency. We define the

average localization error to be the expected value (over

all nodes) of the Euclidean distance between the true

location of a node and the location output by an al-

gorithm. We exclude from consideration isolated nodes

– nodes that are not within radio range of any other

nodes. Sampling efficiency measures the fraction of sam-

ples generated that are not filtered out. It is an impor-

tant measure of performance because low sampling effi-

ciency results in wasted CPU cycles and battery power.

Fig. 4 Sensor hardware

3.2 Hardware

RMCB can be used with most off-the-shelf sensor hard-

ware. We use the Texas Instruments sensor device EZ430-

RF2500 for all our research. This resource constrained

device is composed of the MSP430 CPU and the CC2500

radio (See Figure 4). Note that these nodes allow us to

record received signal strengths (as integer values) for

each packet received.

4 Algorithm RMCB

We first describe the range-free localization algorithm

WMCL [35]. RMCB has the same overall structure as

WMCL, and uses similar ideas in utilizing bounding

boxes, filtering and weighting of samples and location

computation. However, since RMCB is designed to func-

tion with both range-based and range-free nodes, it ex-

tends the use of bounding boxes for this more general

scenario (Section 4.3), and makes improvements to the

sampling algorithm (Section 4.4).

4.1 Algorithm WMCL

WMCL is a fully distributed algorithm. It divides each

time step into two phases. In the first phase, all non-

seed nodes broadcast the the set of possible locations,

an estimated location (the weighted average of the set

of possible locations), and the error of the estimate to

its neighbours (the error is a measure of the quality of

the location estimate). All seed nodes broadcast their

locations to their neighbours. During the second phase

of each time step, nodes receive data from their neigh-

bours and use the received data to update their sets of

possible locations, the new estimated location and the

error of the new estimate. The steps in this algorithm

are below. Assume that x is the node that is being lo-

calized.

1. Construct bounding box B that encloses the inter-

section of the positive constraints imposed by neigh-

bour and second neighbour nodes.
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2. Trim the box B using negative constraints.

3. Sample M points uniformly at random from B.

4. Eliminate (filter out) the points that are not within

distance r from neighbouring seeds, or do not have

distance between r and 2r from second-neighbour

seeds, or are more than distance e + vmax from the

estimated previous location of x, where e is the error

in the estimate of the previous location of x.

5. For each remaining sample s and each non-seed neigh-

bour k whose error is less than the error of the

samples of the node x in the previous time step,

compute the partial weight w(s, k) as the fraction

of samples of k that are within distance r + vmax

of s. The weight of the sample s is computed as

w(s) =
∏

k w(s, k). The weights of all the samples s

are normalized so that they sum to 1.

6. Compute the predicted location of a node as p =

weighted average of filtered points (using weights

computed in the previous step); also compute the

error e = max distance from p to any filtered sample

point.

7. Return location p and error estimate e.

While RMCB has a similar overall structure to that

of WMCL, there are key differences between WMCL

and RMCB are in the constraints used as well as the

bounding box refinement to improve sampling efficiency.

In WMCL, a neighbouring seed j of a node x gives

a positive constraint (d(x, j) ≤ r), in RMCB , we get

a positive and a negative constraint from each seed

neighbour, as pointed out before. The new parts of

RMCB are described next.

4.2 Distance estimation from received signal strength

Since obstacles and multipath effects greatly influence

the accuracy of range estimation from received signal

strength, obtaining reliable upper and lower bounds on

the distance from RSS is not easy. Extensive experi-

ments with our sensor nodes in various indoor settings

(including large open areas) have revealed that stan-

dard path loss models [25] fit our data very poorly (see

Figure 5). Therefore we use empirical measurements for

obtaining upper and lower bounds on the distance be-

tween nodes from RSS. We measured RSS (in dBm) be-

tween nodes using the average of 4 packets. This exper-

iment was repeated 100 times for each distance, and for

44 distances in the range 0.5 - 170 feet. From this data

we compute a distribution D(n) of distances for each

RSS value n and another distribution I(x) of measured

RSS values for actual distances x. We experimented

with taking the upper and lower bound of the distri-

bution D as well as leaving out 10% of the values at

Fig. 5 Received signal strength data in an indoor hallway fit-
ted to the path loss model Path loss = 10n log10 distance + c
to our empirical data. The line fit corresponds to n =
−1.509, c = −63.2778

each end. The latter resulted in much lower accuracy

and therefore was not used in our experiments. In or-

der to make the simulations realistic we sampled the

distribution I to generate the RSS value for each ac-

tual distance x and this value was seen by the receiving

node in our simulations.

The results here are based on indoor measurements

in a long narrow hallway. In 4.7 we describe the adapta-

tion of RMCB to other environments. We note that the

environment used for these results is the one where the

distance bounds are the least tight. In other scenarios

we get higher accuracy than the results presented here

because of more accurate distance estimation.

4.3 Details of RMCB

We assume a WSN deployed in a rectangle planar region

where all nodes (seeds and non-seeds) can move. RMCB

follows a generic framework of Sequential Monte Carlo

sampling based localization algorithm which consists of

three parts: initialization, sampling, and filtering.

In the initialization part, candidate samples for each

non-seed are drawn randomly from the deployment rect-

angle. We assume that each time step has two phases. In

the first phase, all seeds broadcast their exact locations

and each non-seed broadcasts a set of possible loca-

tions, an estimated single location computed from the

possible locations, and a measure of the quality of the

estimate (computed at previous time step) to its neigh-

bours. During the second phase of each time step, each

non-seed node builds a sample area using the received

information and its own set of locations (computed dur-
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Fig. 6 Bounding box distance estimation

ing the previous time step). Then candidate samples are

drawn using the sample area and each candidate sample

is given weight based on the received information. Sam-

ples with weight 0 are discarded during filtering. The

weighted average of the filtered samples is computed

and broadcast the next time step as the estimated cur-

rent location of the non-seed node. The filtered samples,

their weighted average (assumed to be the current es-

timated location) and a quality measure associated to

the current location estimate are also broadcast in the

next time step.

Bounding box creation: Sequential Monte Carlo

sampling based localization algorithms generate candi-

date samples by selecting points randomly from a candi-

date samples area and filter these samples by eliminat-

ing those that do not satisfy some location constraint to
get the valid samples. The candidate sample area should

be small to increase sampling efficiency but should not

be hard to compute. Since our constraints are circu-

lar, their intersection often results in a non-convex ar-

eas or even disconnected pieces. Accurately modelling

the intersection is computationally challenging. There-

fore, we first build a bounding box that contains each

positive constraint. The intersection of these bounding

boxes forms the candidate sample area. We draw the

candidate samples uniformly at random over this area.

The presence of negative constraints decreases the

sampling efficiency because large portions of the candi-

date sample area are eliminated from the set of possible

locations of a node. In RMCB , upper and lower annu-

lar bounds on each distance from the one-hop seed give

a positive and a negative constraint as shown in Figure

6. The smaller the gap between the upper and lower

bound, the more accurate the distance estimate. In or-

der to use the negative information, we choose squares

that properly fit inner circles (formed by lower bounds

as shown by dashed squares in Figure 6). Upon exclud-

ing the negative region, the valid sampling area (the

shaded/coloured area) becomes much smaller.

Two-hop seed neighbours are also used to reduce

the bounding box by replacing r with 2r. Following

WMCL, negative information from two-hop seeds, non-

seed neighbour’s and own previous location estimates,

and maximum error in the x-axis and y-axis are used

to shrink the bounding box. We found that extra con-

straints from range information improve the accuracy

of RMCB but at the cost of lower sampling efficiency.

4.4 Sampling efficiency improvement

If we use all available negative constraints, we poten-

tially get a very complex area which is hard to model.

We use a heuristic that involves choosing a seed whose

annulus has the minimum intersection area with the

outer bounding box to improve sampling efficiency and

reduce computation. In order to reduce computation,

we approximate the area of intersection by using squares

to approximate the circles and the area between the

squares to approximate the annulus. Thus we get a

modified area within the bounding box with a rectangle

removed as shown in the left of Figure 7.

RMCB uses a larger number of constraints com-

pared to WMCL because of the introduction of negative

information from the one-hop seed neighbours and thus

its sampling efficiency may be less than that of WMCL.

In order to improve the sampling efficiency, we use a

heuristic that eliminates the weak constraints in the

presence of strong constraints. While strong constraints

includes the positive and negative information from the

one-hop and two-hop seeds, weak constraints include

the previous time step information of the neighbours
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Fig. 7 Sampling and filtering from the modified region

that are used to construct the bounding box. A non-

seed also uses its own previous estimated location and

valid samples to construct the bounding box from where

candidate samples will be drawn. We observe that when

a non-seed uses the information of neighbours and its

previous samples, then in some cases the bounding box

does not contain its true location. This leads to the gen-

eration of more candidate samples and hence a reduc-

tion in sampling efficiency. Our heuristic is: whenever a

non-seed finds a seed in its one-hop neighbourhood, the

weak information from its neighbours and its previous

samples are not considered for the bounding box con-

struction. Our simulation results show that RMCB out-

performs WMCL using this heuristic in terms of sam-

pling efficiency without compromising the localization

accuracy.

4.5 Filtering and weighting the samples

A candidate sample is filtered out if it does not satisfy

one or more constraints. The remaining samples are the

possible locations of a unlocalized non-seed as shown in

the right of Figure 7.

In order to compute error in x and y direction, the

smallest axis-aligned rectangle that encloses all the fil-

tered samples: (Xmin, Xmax, Ymin, Ymax) is chosen. If lo-

cation estimation is (Xe, Ye), the error in the X-direction

will be max(Xe−Xmin, Xmax−Xe) and the error in the

Y-direction will be max(Ye−Ymin, Ymax−Ye) as shown

in Figure 8.

The filtered samples are provided weights as similar

to WMCL. Note that each localized non-seed broad-

casts its location estimation and the set of filtered loca-

tions, and the error. An unlocalized non-seed node uses

neighbour locations and error estimates, and the set of

filtered samples of the node itself in the previous time

step to compute weight for each of the samples. For each

filtered sample s, a non-seed node n computes weight

based on the received information from each one-hop

non-seed node k whose error is less than the error of

the node n in the previous time step. The sample s gets

a partial weight w(s, k) as the fraction of samples of k

that are within distance r + vmax of s. Using the infor-

mation from all the one-hop non-seeds, the final weight

of the sample s is computed as w(s) =
∏

k w(s, k).

4.6 Location computation

The final step of the algorithm is to compute a loca-

tion qx for an unlocalized node x and get an estimate

on the positional uncertainty. Like many papers in the

literature, we choose qx to be the weighted average of

the samples to be the estimate for node x’s location.

Following [35], we choose the error in the estimate of

the location of x to be the maximum distance from qx
to any sample used to compute qx.

Fig. 8 Computing maximum error
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RMCB (i)
1 // runs at each non-seed node i
2 if i has no neighbours
3 then Cannot localize isolated node.
4 else create outer bounding boxes Bj for each constraint j
5 Create a bounding box B from Bj following WMCL
6 Trim the box B using negative constraints
7 find the seed neighbour m whose annulus has the minimum intersection area with B
8 B ← B \Bm

9 Sample M points from B
10 Filter the points using neighbourhood and non-neighbourhood constraints
11 Using neighbour error information and previous location samples, compute weight of each sample
12 pi ← weighted average of filtered points (using weights computed in the previous step)
13 ei ← max distance from pi to any filtered sample point
14 Return location pi and error estimate ei

Fig. 9 Steps of algorithm RMCB

Figure 9 summarizes the steps of the computation

at each node in our algorithm.

4.7 Reducing ranging error through calibration

It should be intuitively clear that the accuracy of any

range-based algorithm depends on the accuracy of the

distance estimates used by the algorithm. RMCB uses

RSSI measurements for ranging, and accurate estima-

tion of distances from RSSI is known to be difficult. Our

experiments show that we can obtain usable range esti-

mates only by calibrating our range computation func-

tion beforehand by estimating the standard path loss

model parameters in Figure 5 empirically.

We have performed this calibration phase in a va-

riety of indoor and outdoor settings. The distributions

D(), I() described in Section 4.2 change somewhat based

on the scenario. For example, Figure 10 shows the RSSI

data of the receiving packets as a function of distance in

an open field. The path loss model exponent was about

1.7, i.e., very close to the value of free space loss. Here

the best-fit line has parameters n = −1.7, C = −50.11.

Figure 11 shows RSSI versus distance in a typical

computer lab. Due to lots of reflectors and obstacles,

Fig. 10 RSSI as a function of distance, Open Field

path loss exponent is relatively higher. The best fit line

for path loss corresponds to n = −2.0, C = −43.92.

We noticed that the path loss exponent in the hall-

way is less than that in open field and computer lab.

The reason behind this is that the hallway acts as a

waveguide and results in the signal strength decaying

less rapidly than in free space. However, it is also no-

table that the variance in RSSI is higher in the hall-

way, and therefore we get lower localization accuracy

in the other environments that in the hallways because

of more accurate distance estimation.

We also experimented in regions with obstacles, walls

and moving traffic. Unfortunately the range estimation

was unusable in these cases. For example, in the pres-

ence of walls and obstacles the signal loss often is so

high that the resulting distance estimate is very high
and produces distance constraints that are inconsistent

with other constraints. Based on our experience, range-

based localization can outperform range-free localiza-

tion in environments that do not change after calibra-

tion and where there are few obstacles.

Fig. 11 RSSI as a function of distance, Computer Lab
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5 Performance evaluation

We implemented RMCB in the Java-based simulator

supplied to us by the authors of WMCL [35]. We looked

for range-based localization algorithms for comparing

the performance of RMCB . Unfortunately, none of the

existing RSS-based algorithms were appropriate. [3] uses

3 fixed beacons; [4] does not perform localization in

a global coordinate system; [30] localizes nodes using

static beacons whose coordinates are precisely known.

We measured the performance of the algorithm in [10]

with range measurements made with our hardware; our

experiments yielded very high localization error, and

very low sampling efficiency. Therefore we chose WMCL

[35] for comparison. Despite being a range-free algo-

rithm, WMCL performs very well in terms of both lo-

calization error and sampling efficiency.

Unless otherwise stated, our simulations were done

with a 1000 units ×1000 units obstacle-free field. While

many applications will not have an obstacle-free envi-

ronment, this choice was made for simplicity. We set

the radio range r = 170 units. This value is used in

WMCL and to normalize velocity and localization er-

ror. The actual RSSI values in our simulations are gen-

erated using empirical data and the range computation

is done by RMCB using the method described in Sec-

tion 4.2. We note that our empirical model, while more

realistic than simple models used in the literature, is

still a coarse model of real radios because radio range

is not circular and therefore connectivity changes with

antenna orientation.

We used 40 to 200 sensor nodes. The number of

seeds was varied between 4 and 30. All nodes (includ-

ing seeds) were deployed uniformly randomly over the

rectangular field. We allowed all nodes (including seeds)

to be mobile. Like many previous papers (including

[35]), we modelled node mobility using the modified

random waypoint mobility model. In the random way-

point model, each node chooses a destination at random

and moves in a straight line toward it using a velocity

chosen uniformly at random from [0, vmax]. Upon reach-

ing the node, it pauses a fixed amount of time and

then repeats the process. The modified random way-

point model eliminates the fixed pause.

We assumed a reliable MAC layer for our simula-

tions, in keeping with [35] and most other papers in the

literature. This is reasonable for at least for low data

rate networks, because reliability can be implemented

using retransmissions.

The parameter vmax was varied between 0 and 340.

Following [35], the simulator runs for a warm-up pe-

riod of 600 steps, and then takes measurements for 400

steps. This is repeated 30 times and the readings are

averaged. We use the term seed degree to denote the av-

erage number of seeds a non-seed node identifies as its

first neighbours. This is often (mistakenly) called seed

density in the literature. In keeping with the literature,

average localization error is expressed as a fraction of

radio range r.

5.1 Localization error

We measured the variation of localization error with

seed degree first. We used vmax = 10 and the number

of nodes N = 60. Figure 12 shows the error produced by

RMCB and WMCL. RMCB consistently produces a lo-

calization error of roughly 5% (of radio range) less than

that of WMCL. Figure 13 shows the effect of varying

vmax on the localization error. The number of seeds was

set at 10 and the other parameters were unchanged. For

most applications, vmax should not exceed 0.5r, but we

show the results for much higher values as well. As seen

in Figure 13, RMCB produces 8-10% lower localization

error as compared to WMCL at low speeds.

Fig. 12 Localization error vs seed degree

Fig. 13 Localization error vs speed



Accurate Sensor Network Localization 11

Fig. 14 (a) Sampling efficiency vs seed degree, and (b) Sampling efficiency vs speed

5.2 Sampling Efficiency

Since RMCB has extra constraints, its sampling effi-

ciency could be expected to be lower than WMCL.

Figure 14(a) and (b) show the variation of sampling

efficiency with seed degree and speed (respectively).

RMCB has better sampling efficiency than WMCL for

low to medium seed degree and low speeds. At higher

speeds and seed densities, the sampling efficiency of

RMCB is higher than that of WMCL, but remains within

5% of that of WMCL.

5.3 Computational Overhead

We compared the computational load of RMCB with

WMCL using the metrics used in [35] – viz., num-

ber of comparisons and number of distance computa-

tions. Figure 15 shows that RMCB uses less compar-

isons and distance computations than WMCL for low

and medium seed degrees. At high seed degrees, the

decrease in sampling efficiency seen in Figure 14(a) re-

sults in an increased number of comparisons. We infer

that the heuristics we used to limit the sampling area in

Section 4.4, and shown in Figure 7, need improvement

for high seed degrees.

5.4 Communication cost

Nodes in RMCB broadcast location information similar

to WMCL. Each seed broadcasts its location and each

node broadcasts its location estimate and errors, as well

as the location information it received from neighbours,

so that each node knows of its two-hop neighbourhood.

If we assume that the location estimate and maximum

error of the estimate of a node are k bytes long, then the

communication cost of each node is O(Sd+1+k) where

Sd is the seed degree. Although RMCB uses range infor-

mation, unlike WMCL, the RSSI values do not need any

extra communication. Thus the communication cost for

these both algorithms are the same.

6 Hardware implementation and experiments

Fig. 16 EZ430-RF2500 Testbed

We implemented RMCB and WMCL on our sensor

nodes. In the hardware implementation, we allow nodes

to use only the information from the one-hop neigh-

bours, although both RMCB and WMCL allow nodes

the option to use location information from two-hop
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Fig. 15 (a) No. of comparisons vs seed degree, and (b) No. of distance computations vs seed degree

Table 1 Comparison of localization accuracy of WMCL, RMCB from hardware implementations

No. of nodes No of non-seeds Error (RMCB) Error Variance (RMCB) Error (WMCL) Error Variance (WMCL)

number number number number number number
15 3 9.6 2.0 38.3 2.2
12 5 36.6 33.5 45.3 24.2
10 5 25.9 20.0 36.8 14.1
8 5 19.1 13.1 44.5 22.6

Fig. 17 True and estimated Locations in WMCL, RMCB

neighbours. Thus we do not need any routing infras-

tructure. A simple statically scheduled TDMA MAC

protocol is also programmed in all the nodes. Specifi-

cally, each node is allowed to broadcast in the assigned

TDMA slot, so that collision-free communication is guar-

anteed. We do not consider any mobility. We imple-

mented a multi-hop environment using a network of

10 TI EZ430-RF2500 nodes placed in 5 feet × 10 feet

rectangular obstacle-free area. Figure 16 shows our ex-

perimental testbed. We set the receiver sensitivity at -

61 dBm, and that resulted in a radio range of about 1.5

feet. The hardware implementation demonstrates that

the computational complexity of RMCB is low enough

for it to be implemented on existing sensor hardware.

Figure 17 shows our experimental results. Black dots

represent the true positions of the nodes. 3 non-seed

nodes compute their locations using the information

from the seeds and localized non-seed nodes. Blue dots

show where the non-seed compute their locations in our

testbed using RMCB. Similarly red dots are the WMCL

output of locations of the non-seeds. It is seen that in

two of the three cases, RMCB localized nodes more ac-

curately than WMCL.

Table 1 shows the results of more systematic hard-

ware experiments comparing the localization accuracy

of WMCL and RMCB . For these experiments, nodes

were static again and radio range was normalized to

100 units. The error shown is in these units. Thus an

average error of 9.6 units indicates a 0.096r error. The

table shows that the mean and variance of localization

error are better for RMCB that WMCL. This implies

that RMCB is not only better on average, but it also



Accurate Sensor Network Localization 13

produces low localization errors more consistently than

WMCL.

However it is worth pointing out that when the node

density was increased beyond those shown in the table,

RMCB sometimes produced inconsistent constraints. We

hypothesize that he presence of many nodes in the phys-

ical vicinity of a node caused signal decay, perhaps due

to interference and this negatively impacts range esti-

mation as indicated in Section 2.2.

7 Conclusion

In this paper we propose a very general, fully distributed

localization algorithm RMCB for WSNs that allows

nodes to be static or mobile and that can work with

nodes that can perform ranging as well as nodes that

lack ranging capabilities. RMCB makes use of the re-

ceived signal strength measurements that are available

from the sensor hardware. We use RMCB to address the

question: “When does range-based localization work

better than range-free algorithms?” We demonstrate

using simulations and hardware implementations that

RMCB outperforms a very good range-free algorithm

WMCL in terms of localization error in a number of

scenarios. We describe the limitations of our range esti-

mation approach and provide guidelines on when range-

based localization is preferable. More research is needed

to design accurate ranging algorithms in regions with

lots of obstacles.
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