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Abstract In an application-layer distributed denial of service (DDoS) attack,
zombie machines send a large number of legitimate requests to the victim
server. Since these requests have legitimate formats and are sent through nor-
mal TCP connections, intrusion detection systems (IDS) cannot detect them.
In these attacks, an adversary does not saturate the bandwidth of the victim
server through inbound traffic, but through outbound traffic. The next aim of
the adversary is to consume and exhaust computational resources (e.g., CPU
cycles), memory resources, TCP/IP stack, resources of input/output devices,
etc. This paper proposes a novel scheme which is called ConnectionScore to
resist such DDoS attacks. During the attack time, any connection is scored
based on history and statistical analysis which has been done during the nor-
mal condition. The bottleneck resources are retaken from those connections
which take lower scores. Our analysis shows that connections established by
the adversary give low scores. In fact, the ConnectionScore technique can es-
timate legitimacy of connections with high probability. The rate of suspicious
connections being dropped is adjusted based on the current level of overload of
the server and a threshold-level of free resources. To evaluate the performance
of the scheme, we perform experiments in the Emulab environment using real
traceroute data of the ClarkNet WWW server1.
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1 Introduction

In the literature on DDoS attacks, an adversary normally uses IP spoofing
to prevent disclosing location of its zombie machines (aka bots) [16,20]. Also
in the literature of DDoS attacks, it has been stated that the goal of the
adversary is to overwhelm the bottleneck resources of the victim server by
flooding of bogus packets [16,20,9]. For instance, in a bandwidth attack, the
adversary tries to saturate the bandwidth through a flood of inbound traffic;
i.e., sending a flood of bogus large packets toward the server. In a SYN flood
attack, the goal of the adversary is to exhaust the TCP/IP stack through
sending a large number of bogus SYN requests without taking the third step
of the 3-way TCP handshaking.

In contrast, this paper focuses on a more difficult DDoS problem in which
an adversary attempts to overwhelm the server through zombie machines via
legitimate requests. In this attack type which is called application-layer DDoS
attack, any zombie machine has to establish a TCP connection with the victim
server, which requires a genuine IP address; otherwise, the TCP connection
cannot be established. Although, in this attack model, the IP addresses of
zombie machines cannot be spoofed, the adversary does not worry about dis-
closing the IP addresses of zombie machines. The fact is that today social sites
such as Facebook, Twitter, Yahoo messenger, etc., and software tools such as
VoIP tools, etc., have provided many zombie machines for the adversary. Most
users of these sites and software tools have little knowledge of computer and
network security and more interestingly, most of these users leave their com-
puter system online for long times. On the other hand, today, improvements of
technology have provided high speed (high bandwidth) Internet for such users.
All of the above evidences show that power of attackers to perform DDoS at-
tacks, where the adversary does not need to hide the location of its zombie
machines, is rapidly expanding.

In application-layer DDoS attacks, requests of zombie machines cannot be
distinguished from requests of normal users since both of them have a legiti-
mate format and are sent via normal TCP connections. Consequently, Intru-
sion Detection Systems (IDS) fail to detect these. In these attacks, an adver-
sary does not overwhelm the bandwidth of a victim server through flooding
the server with inbound traffic, but through saturating the outbound traf-
fic. In other words, the adversary sets the zombie machines to legitimately
and frequently download files from the victim server and consequently, over-
whelms the bandwidth of the victim through outbound traffic. The next aim
of application-layer DDoS attacks is that the adversary attempts to exhaust
any limited resources of the victim server such as TCP buffers, CPU cycles,
memory, input/output device resources, etc.

HTTP flood [27] is one of the most popular application-layer DDoS at-
tacks. The World Wide Web (WWW) is one of the most popular applications
on the Internet. WWW applications generally use the Hypertext Transfer Pro-
tocol (HTTP) over TCP port number 80. Most firewalls on the Internet leave
this port open to allow HTTP traffic to pass. In the HTTP flood attack, the
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adversary sets the zombie machines to bombard the victim server with HTTP
requests. To saturate the bandwidth of the victim server, the adversary can set
the zombie machines to request large pages. The victim then has to read the
page from the hard disk, store it in its memory, load it into packets and then
send the packets to the zombie machines. As can be seen, a simple HTTP flood
attack can kill four birds with one stone: (1) it can overwhelm the bandwidth
through outbound traffic, (2) it can exhaust memory, (3) it can exhaust CPU
cycles and (4) it can exhaust input/output device resources. In the case of a
large number of connections it can even exhaust the TCP/IP stack. Due to its
attractiveness, HTTP floods have become a common feature in most botnet
software programs [13]. FTP flood is another example of such attack.

Previous well-known DDoS countermeasures cannot tackle this type of
attacks (see next section). CAPTCHA puzzles [17,21] have been proposed
against these attacks. However, CAPTCHA puzzles suffer from some chal-
lenges (see next section). This paper proposes a novel, cheap and systematic
technique against these attacks which is called ConnectionScore technique.
Our goal is to design a technique that tackles application-layer DDoS attacks
without using CAPTCHA puzzles or with a minimum level of CAPTCHA
puzzles.

The ConnectionScore technique proposes that during normal conditions,
any server can measure various statistical attributes for its users and their
traffic. The statistical attributes represent the behavior and the characteristic
of normal users. A server can keep the statistical attributes as a reference
profile. Now, when an attack occurs against the server, the server assigns
scores to the connections based on the reference profile. It retakes bottleneck
resources from those connections which have low scores. The key point is that
the connections which have been established by the attackers get low scores
because they cannot have statistical attributes of the normal users. The reason
is that first, only the server knows what the statistical attributes of its users
are and second even if attackers attempt to have some attributes close to
attributes of normal users, they cannot launch an effective attack against the
server. Dropping of suspicious connections is adjusted based on the current
level of the overload of the server.

To evaluate the performance of the scheme, we focus only on a HTTP
flood attack though our scheme can be used for other application-layer DDoS
attacks. We perform experiments in the Emulab environment using real logged
data of the ClarkNet WWW server as a case study. Our experiments show
that the ConnectionScore scheme can precisely detect malicious connections
and retake the bottleneck resources from them.

The rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 describes the ConnectionScore scheme. Section 4 presents and
analyzes statistical attributes for the case study. Section 5 shows the experi-
mental results and finally Section 6 concludes the paper.
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2 Related work

Both academic and industrial researchers have proposed various defense tech-
niques against network-layer DDoS attacks. However, those techniques cannot
be used as a remedy against application-layer DDoS attacks. The techniques
proposed for SYN flood attacks [5,10] cannot be used as a remedy for the
application-layer DDoS attacks because all attackers successfully complete
the 3-way TCP handshaking and establish TCP connections. The coopera-
tive techniques [8,29,9] which have been proposed against TCP flood, UDP
flood and ICMP flood cannot be used as a countermeasure against application-
layer DDoS attacks as cooperative techniques prevent saturation of the victim
server’s bandwidth through controlling and rate-limiting the inbound traffic.
In our attack model, however, attackers attempt to overwhelm the server’s
bandwidth with outbound traffic. The techniques which have been proposed
for IP traceback [23,1] are useless for this attack type as all attackers use their
real IP address to attack the server. Consequently there is no need for IP trace-
back techniques. In this paper, we do not review countermeasure techniques
against network-layer DDoS attacks. A useful survey that collects network-
layer DDoS countermeasures is [4]. Although research on countermeasures
against application-layer DDoS attacks is young, some interesting techniques
have been proposed during recent years. This paper reviews some of them.

The most promising technique against application-layer DDoS attacks is
CAPTCHA puzzles. A CAPTCHA puzzle [21] is a type of challenge-response
test used in computing as an attempt to ensure that the response is gener-
ated by a human not by a machine. However, the CAPTCHA solution has
three major challenges. (1) Patience of the users: several reports [6,11] show
that these tests annoy the users and they are not user-friendly. Since many
users have little patience to solve a CAPTCHA test and wait for response,
a site that uses CAPTCHA may drive away legitimate users. (2) Breaking
techniques: today, several image recognition techniques have been proposed to
break CAPTCHAs [18]. (3) Labor attack: some reports [2,26] indicate that
there are free or cheap 3rd party human labor to break CAPTCHAs.

Gavrilis et al. [12] proposed “Decoy Hyperlink” to detect zombie machines.
The decoys are hyperlinks without semantic information and are invisible to
the human users, acting like traps for DDoS attacks because a human user
would never follow them. A zombie machine is detected when such hyperlink
is followed. The authors assume that an attacker scans all hyperlinks in a
page and follows all hyperlinks, but if an attacker only follows a fraction of
the hyperlinks of a page, then it is very likely that the decoy hyperlinks are
not selected. Moreover, as an attacker can solve CAPTCHAs using pattern
recognition techniques, he can recognize decoy hyperlinks by designing similar
tools. When decoy hyperlinks are invisible for human users, the attacker can
simply design a tool and detect such hyperlinks.

Yatagai et al. [27] proposed two simple ideas: a) when there are attacks
from compromised clients with the same virus or bot, the server can observe
the same browsing order of pages continually at the server, 2) attackers browse
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a web page for a shorter time than normal users; thereby if a user browses a
web-page shorter than a threshold time, it is considered as malicious. The first
idea does not work as the attacker can set zombie machines to send requests
for random pages. The second idea also does not work as the attacker can
browse a web-page for a longer time and simply pass the threshold.

Thapngam et al. [25] classified attack rates into two categories: predictable
rates and non-predictable rates. Predictable rates include constant rate, mono-
tonically increasing rate and periodical rate. However, non-predictable rates
have no classification. The author then proposes a Pearson correlation coeffi-
cient theorem to detect predictable rates for all three classes. However, they
have no solution when attackers send requests at random and unpredictable
rates.

Xie and Yu [28] proposed a hidden semi-Markov model for anomaly de-
tection of browsing behavior. The authors assume that normal users always
access pages sequentially based on hyperlinks organization, while attackers do
not follow this organization and access random pages directly using their URL.
Then authors recognize attackers through the entropy test. Even if, the first
assumption is true, the second assumption which is the base of the algorithm
is not always true. We note that an attacker can easily design a tool and ask
zombie machines to follow pages based on the hyperlink organization. In this
case, the entropy value of attackers and normal users locate in the same range
and the server cannot detect zombie machines. The second challenge of this
method is its algorithmic complexity.

Oikonomou and Mirkovic [19] proposed a countermeasure based on human
behavior modeling which recognizes DDoS botnet machines from human users.
The basic of the technique is based on three aspects: request dynamics, request
semantics and ability to process visual cues. According to their technique, they
should build a possibility graph for a website. The major challenge is that for
most large websites with too many dynamic pages and objects inside, finishing
construction of the graph is hardly done or never done.

Paul Barford et al. [3] used wavelets to distinguish the legitimate requests
from malicious DoS requests. However, the method is a post-mortem technol-
ogy and cannot stop the attack on-line.

Ranjan et al. [22] proposed a counter-mechanism that consists of a sus-
picion assignment mechanism and a DDoS-resilient scheduler, DDoS Shield.
The suspicion mechanism assigns a value to each client session in proportion
to its deviation from legitimate behavior according to three parameters: ses-
sion arrivals, session request arrivals and session workload profiles. Then the
DDoS shield decides when and where a session is serviced. First, we believe
those three parameters cannot determine deviation from legitimate behavior
accurately and second, the DDoS shield cannot actively block the malicious
traffic.
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3 Description of the ConnectionScore scheme

The basic idea of the ConnectionScore scheme is as follows. A server can mea-
sure various statistical attributes for its users and their traffic during the nor-
mal condition when there is no attack against it. Undoubtedly, the measured
statistical attributes represent behavior and characteristics of the normal users
of the server. These attributes are site-dependent which means that an outside
attacker cannot be aware of such statistical attributes. The server can consider
the measured statistical attributes as a reference profile and use it during the
attack time as a judgment reference point. When an application-layer DDoS
attack occurs against the server, the server assigns a score to connections based
on the reference profile. As can be seen below, the connections which get lower
scores are more probable to be the connections which have been established
by the attackers. In fact, the ConnectionScore scheme predicts legitimacy of
connections with high probability. In the next step, in a feedback-control pro-
cess, the server retakes bottleneck resources from the connections which have
lower scores until its current load reaches below a threshold.

3.1 Attributes

A server can consider various attributes for users and their traffic. In this
paper, we introduce some of them, though other attributes can be discussed.

Request rate

The request rate represents the number of requests that a user sends to the
server in a specific interval time. The server measures request rate for differ-
ent random users during different random times a day, different days, differ-
ent weeks, etc. Then the server can find the cumulative distribution function
(CDF) for request rate of normal users. Also, it can measure the average
amount and standard deviation of this attribute.

Download rate

The download rate represents the number of bytes that a user downloads from
the server during a specific interval time. Similarly, the server can measure
download rate by choosing different random users during different times a
day, different days, different weeks, etc. Hence, the server discovers CDF for
download rate of its normal user and meanwhile it calculates the average and
standard deviation for this attribute.

Uptime

The uptime represents a time that a user starts communication with the server
until he terminates the communication with the server. The server randomly
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selects users during different times (days, weeks, etc.) and calculates their
uptime. Similarly, the server can obtain CDF, average and standard deviation
for uptime of normal users.

Downtime

The downtime represents the interval time from the time that a specific user
disconnects from the server until the time he connects again to the server.
Although the downtime attribute cannot be measured for all users as some
users may either never connect again to the server or connect to the server
too late, surely some users reconnect every few days or several times a day.
In such case, the server can measure the downtime for such users and also
discover CDF, average and standard deviation for this attribute2.

Browsing behavior

The browsing behavior of users of a web-site depends on two main factors:
a) the structure of the website and b) the behavior of users. Normally, any
web-server consists of many web-pages that have been organized hierarchically
through hyperlinks. In fact, a typical webpage contains a number of hyperlinks
to point to other pages. The behavior of users indicates that which pages are
more favorite for users (page popularity). Which fraction of hyperlinks on a
typical page is clicked by normal users? We will also discuss other behaviors
below. In fact, we discuss this attribute via several sub-attributes.

Sequential-hyperlink pages
The structure of most websites is hierarchical, based on hyperlinks such

that a user cannot access to a particular page directly unless he has accessed
some sequence of pages prior to that particular page. However, it is possible
that a user directly accesses such pages by typing their URL in the browser.
During normal condition, a server can predict the percentage of such accesses
through its history. Then in the attack time, if direct access rate of a user to
pages (not through hyperlinks) passes a threshold, the user gets a negative
score.

Repetitive pages
In a random flood attack, an attacker may request several times the same

page. When the number of requests for a same page through a same user passes
a threshold, the user is more probable to be a malicious user.

Out-of-time pages
Out-of-time pages refer to the old pages that are rarely requested. For

instance, pages that have been uploaded 24 hours ago may have no requests
or few requests. A server can estimate a threshold time for the out-of-time
attribute such that if during the attack a user sends request for the pages that
have been uploaded before that time, it gets a negative score.

2 An ISP normally changes the IP address of users every two or three days. As a result,
a server can measure downtime of users who connect to the server again in less than two or
three days.
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Page classification based on type
In several servers, pages can be virtually or logically be classified based on

their types. For instance, a news web agency can classify its pages based on the
type of the news: politics, economics, culture, sport, etc. Then the server can
measure the request rate of each user for each category. The collected data of
different users of different times assists the server to depict the CDF for each
category. Similarly, the CDF helps the server to consider a threshold rate for
each category such that during the attack if a user has a request rate larger
than the threshold rate of a category, he gets a negative score.

Page access rate and page popularity
Surely, every page has a different access rate. Some pages are frequently

requested by the users and some have very few requests. The result of web
mining [14] shows that in most of cases, about 10% of the pages of a website
draw 90% of the access. This attribute can significantly help the server to
detect malicious connections as attackers are not aware of the popularity of
pages and thereby access the pages randomly. The server can measure the
access rate for any page during a time interval. Then the server can measure
the popularity for each page as the following formula:

pti =
ati∑N
j=1 a

t
j

(1)

where pti shows the popularity of page i during time interval t; N is the
number of pages and ati is the access rate for page i during the time interval t.

The key point is that the server classifies pages based on their popularity
into five major categories: very low, low, medium, high and very high popular
pages. Then, it classifies any of the above major categories into some smaller
classes such that pages which have similar popularity locate in one class. Then,
for each class, the server depicts the CDF of the percentage of requests of users
for pages of each class. Next, the server determines a threshold rate for each
class based on the CDF. For instance, the server can consider a threshold rate
for a CDF of 95% in a class; while it can consider the threshold rate for a CDF
of 90% in another class. During the attack time, if the percentage of requests
of a user exceeds the threshold rate for a class, he gets a negative score as
explained below.

Hyperlink fraction click
Suppose a page has k hyperlinks. Which fraction of hyperlinks of a page is

clicked by a user? During normal condition, a server can extract for each page
a fraction of hyperlinks on which a user clicks with a given probability. Then
the server can define a threshold for each page based on its observation from
normal users such that the higher deviation from the threshold, the higher the
probability is to be a malicious user.

Hyperlink depth
Let us explain this attribute with this question: how many consecutive

interlinked pages a user requests? The depth (D) a user proceeds in hyperlink
pages is an effective attribute that a server can extract for its normal users.
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Similarly, a server can compute the CDF, average and standard deviation for
this attribute.

Source IP address distribution

In most cases, source IP distribution of legitimate users is different from source
IP distribution of attackers. While, distribution of source IP addresses of legit-
imate users is more uniformly scattered across the Internet; the distribution
of source IP addresses of attackers is more cumulated in some places. This is
because an adversary can catch several zombie machines in the same LAN or
same area. For instance, in a university or in a company, most users rely on
central firewall that has been installed on the gateway (they, themselves, do
not care about installing firewalls or regularly updating the tool); hence, if an
adversary could break the firewall’s rules, he can capture several zombie ma-
chines from the same LAN. Figure 1 shows an example of this attribute where
the left image shows source IP address distribution of a server just prior an
DDoS attack (the right image). In fact, in some attacks, we can see the cre-
ation of several clusters of source IP addresses; while before the attack there
were no such clusters. The IP addresses within the range of clusters are more
suspicious to be the IP address of zombie machines.
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Fig. 1 Source IP address distribution: a) just before attack, b) after attack

Vice versa, in some particular cases, most users of a web-site are clustered in
few particular places in different times a day. For instance, most users of a news
web-agency that broadcasts news in the Persian language can be clustered in
a few places especially in the countries which speak Persian language. During
normal conditions (different days, weeks and months), the administrator of
such web-sites can extract the map which shows cluster places of its normal
users for different times a day. As it is more probable that the zombie machines
are clustered in the places rather than the cluster places of normal users, the
administrator can distinguish clusters of source IP addresses of its normal
users from clusters of source IP addresses of zombie machines.

However, we should have in mind that the source IP distribution cannot
always help, as the source IP distribution of zombie machines in some attacks
may be uniformly distributed across the Internet or in the latter case zombie
machines be in the same clusters of the normal users.
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Arrival distribution rate of users

In any server, the arrival rate of users is different during different times a day.
A server can measure arrival rate of users for different times a day, during
different days a week, month, etc. Hence, a server can predict the arrival rate
for different times for future days (except flash crowds that we discuss in
Section 3.6). Normally, arrival rate of users follows the Poisson distribution.
The Poisson distribution theory indicates that if the expected arrival rate in
an interval is λ, the probability that k users connect the server during that
interval is:

f(k;λ) =
λke−λ

k!
. (2)

For example if any second, two users connect the system (λ = 2), then the
probability that 20 users connect to the server during a second is 5.8× 10−14.
In a DDoS attack, a large number of attackers simultaneously or in a short
time connect the server. According to the above probability, we can predict
that most of the users who connect to the system during that particular time
are attacker’s machines. The interesting point is that the server can predict
percentage of false positive (falsely detect a legitimate user as a attacker’s
machine) for that particular time as it knows the normal arrival rate for each
time.

Well-known confirmed users

In several sites, some users often and regularly visit the sites, for instance,
every day, every few days or even several times a day. A server can precisely
detect its well-known users. These users always appear in the same place with
the same IP address. Even, a server can extract the interests of such users
(what kind of files, pages they always refer). However, this is only possible
for those users that use static IP addresses. The users which their system use
dynamic IP address cannot be well-known for a server, as the corresponding
ISPs regularly (every few days) change their IP addresses3. During the attack
time, a server can consider positive credits for such users.

A server must precisely identify its well-known users; otherwise an adver-
sary can cheat the server with such a rule.

3.2 Analysis of attributes

Let us discuss the abilities of attributes and show whether attackers can bypass
attributes or not. We are aware that an attacker can easily set the attack tool
such that it does not request for repetitive and out-of-time pages (though the
attacker really does not know what the threshold time is for the out-of-time
pages). The attack tool also can be set in such a way that it always follows

3 We note that in most of ISPs a user can have a static IP address by paying some
additional money.
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the rule of sequential-hyperlink pages and does not request for pages directly.
In fact, an attacker can easily thwart these three attributes. However, we still
consider them for calculating the scores because if an attacker forgets to set
his attack tool correctly, then these attributes make sense.

An attacker also can thwart some other attributes, but he encounters some
difficulties and limitations. For instance, an attacker can send request rate in
the order of legitimate users or he can have a download rate in the order of
legitimate users as well. But, the problem is that in such cases, the attacker
should have numerous zombie machines to be able to set up an effective attack.
We call such attack a meek attack and below, we discuss it in detail.

The attribute of “source IP address distribution” is somewhat in contra-
diction with attributes of “request rate” and “download rate”. If an attacker
tries to avoid creation of clusters of source IP addresses, then he should use
smaller number of zombie machines. In this case, the attacker can choose a
set of zombie machines from the pool of zombie machines that he has in such
a way that IP address of zombie machines are evenly distributed across the
globe. But, the point is that in this case, the attacker should use a high rate
for request rate and download rate to have an effective attack. On the other
hand, if the attacker wishes that all zombie machine have send/receive rates
in the order of legitimate users, then he should use numerous zombie machines
for an effective attack (meek attack). In this case, creation of clusters of source
IP addresses is inevitable!

Tackling the attribute of “arrival rate distribution” is not easy for the
attacker. For instance, suppose in a meek attack, the attacker uses 20 000
zombie machines to bring down a server. If he organizes the attack in such a
way that every second, 10 zombie machines establish connections, then about
34 minutes are required for completing the attack scenario. Moreover, the
attribute of “uptime” is in contradiction with this scheme because those zombie
machines which have established connection earlier encounter the limitation of
“uptime” and get negative scores of uptime. In fact, the attacker is forced to
activate a large fraction of zombie machines in a short time and consequently,
they get a negative score of this attribute.

To bypass attributes of “hyperlink fraction click” and “hyperlink depth”,
an attacker encounters a serious challenge because these two attributes are
in contradiction. First, we note that any page has a particular threshold rate
for “hyperlink fraction click”. For instance, while this threshold for a page
may be 40%, for another page, this threshold may be 3%. Second, an attacker
is not aware of these threshold rates. However, an attacker may try to click
small fraction of hyperlinks of each page to guarantee that he remains below
the threshold rate for each page. In this case, first, an attacker does not know
which particular rate to select and does not know if the selected rate is much
larger or smaller than the threshold rate of different pages. The second issue
which is much important is that if an attacker chooses a small fraction rate
for clicks on each page, then he should proceed in depth. We note, in this case,
the attacker get negative score of attributes of “hyperlink depth”. In fact, the
attacker should find a semantic relation between these two attributes which it
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seems unlikely because the attacker does not have access to statistics of these
two attributes.

We believe an attacker cannot bypass the attributes of “uptime”, “down-
time”,“page classification based on type” and “page popularity” because these
attributes are completely site-dependent and thus more difficult for an out-
sider attacker to collect such information. Below, in Section 3.7 we discuss the
reaction of the attacker against page popularity in depth.

3.3 Computing scores

In this section we formulate the notion of score for each attribute and subse-
quently for each connection. An established connection c has a set of attributes
Ac

i , where A
c
1 could be the request rate, Ac

2, the download rate, etc. Let S(Ac
i )

be the score of connection c associated with attribute Ai. We then calculate
the total score for connection c as the sum of scores of all attributes:

S(c) =
n∑

i=1

S(Ac
i ) , (3)

where n is the number of attributes. Now, let us explain how the score of
a connection is calculated for an attribute such as Ai. The score for attributes
of “request rate”, “download rate”, “uptime”, “page popularity”, “out-of-time
pages”, “repetitive pages”, “sequential-interlink pages”, “page classification
based on type”, “hyperlink fraction click”, “hyperlink depth” and “arrival
distribution rate” is calculated as follows. Suppose y = fi(x), where fi shows
cumulative distribution function (CDF) for the attribute Ai in the reference
profile. For instance, when the value of attribute is x1, the CDF for this value
is y1 = fi(x1). Assume that the control unit has determined a pair of (xb, yb)
as a reference baseline; so, yb = fi(xb). In the next section, we explain how
the control unit through a feedback-control process selects the appropriate
baseline point. Assume that the value of the connection c for the attribute Ai

is shown by xc
i . If x

c
i ≤ xb, then the score associated with this attribute for the

connection c would be zero; otherwise, the score is calculated as the following
formula:

S(Ac
i ) = −1× kdiv(

xc
i
−xb
∆x ) × xc

i − xb

∆x
, (4)

where k is a geometric constant value (e.g., 1.2), div(m/n) shows quotient
m per n and ∆x is a constant scale factor. As can be seen, the higher the
deviation from the base-line value (i.e., xc

i − xb), the lower the score which is
decreased in a semi-geometric progression. For instance, assume that the base-
line point is (0.3, 0.7) for the attribute of request rate; 0.7 = fi(0.3) which it
means that 70% of users have equal or less than one request per each three
seconds. Now, suppose that the value of connections c1 and c2 for the attribute
of request rate are 0.4 and 0.75, respectively (i.e., xc1

i = 0.4 and xc2
i = 0.75).
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Assume that k and ∆x are 1.2 and 0.1, respectively. In this case, the score of
request rate for connections c1 and c2 would be −2 and −9.33, respectively.
Any server can select k and ∆x appropriately based on the volume of attack
rate.

The score for the attribute of “downtime” is calculated as for the above

attributes, but in the reverse direction; i.e., 0 if xc
i ≥ xb and −1×kdiv(

xc
i
−xb
∆x )×

xc
i−xb

∆x if xc
i < xb.

The score for attributes of “source IP address distribution” is a constant
value: if a connection has been established from locations where we guess are
the location of attackers, the connection gets a constant score, for example
−14; otherwise the connection gets zero.

3.4 Control unit

The goal of the control unit is to prevent exhaustion of bottleneck resources
and, as a result, prevent that the server goes down during the attack. To
achieve this goal, the control unit defines two thresholds for each bottleneck
resource and defines three strategic states: red, yellow and green. For each
bottleneck resources, we define threshold1 and threshold2 as 90% and 60%
of the total capacity of the bottleneck resource, respectively5. When the load
of a bottleneck resource exceeds threshold1, we say so the situation of the
bottleneck resource is in the red state. Whenever, traffic is controlled and
the load of the bottleneck resource returns below threshold1, but still is
above threshold2, we say so the situation of the bottleneck resource is in
the yellow state and finally, when the load of the bottleneck resource returns
below threshold2, we say so the situation of the bottleneck resource is in the
green (normal) state.

The control unit periodically checks status of the bottleneck resources of
the server (e.g., bandwidth, TCP/IP stack, CPU cycles, memory, etc.). When-
ever the load of one of the bottleneck resources of the server exceeds threshold1,
the server goes to the freeze mode and the control procedure is started. As
long as the server is in the freeze mode, it does not accept new connections.
The next task of the red state is that the control unit assigns scores to the
established connections and then drops suspicious connections until the load
of bottleneck resource(s) has(ve) returned below threshold1. When the state
of the system exits the red state, the server exits the freeze mode and accepts
new connections. After exiting from the red state, if the server locates in the
yellow state, although the server exits the freeze mode, the control unit still
calculates score for the established connections. In this state, if a request for a
new connection (i.e., SYN packet) arrives, the control unit first checks whether

4 The value of constant score can be discussed and it is possible that a server could extract
a suitable value by its experience. However, we choose -1 for constant score in this paper.

5 These thresholds can be varied from a server to another server. They can be chosen
precisely for any server based on the experience that the server gets during several days (the
rate of thresholds for this work have been selected based on our case study).
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the source IP address of the SYN packet is in the blacklist or not (see below).
If it is in the blacklist, then its previous score is summed up with the score
of the “downtime” attribute. If it is not in the blacklist, only score of “down-
time” attribute is calculated for it. Then the score of the new connection is
compared with the score of established connections; if the lowest score of the
system is lower than the score of the new connection, the connection with the
lowest score is dropped and the new connection is appropriately established.

The control unit always follows the following rules:

Rule 1: the connections which get zero score are not dropped. In other
words, only connections with negative scores are candidates for being dropped.

Rule 2: if the score of a connection is equal or greater than a threshold
(e.g., -10), the control unit should send a CAPTCHA test for the user. If the
user solves the test the connection is not dropped; otherwise, the connection
is dropped. Let us call this threshold the “drop threshold”.

Rule 3: if the score of a connection is smaller than the drop threshold (e.g.,
-10), the connection is candidate for dropping without testing CAPTCHA
puzzle with it.

The control procedure is as follows.

1. The control unit initializes the baseline point for each attribute to a specific
value. The decision about the initial value of baseline points can be made
in the pre-attack stage. Normally, initial values are selected such that min-
imum amount of false positive (FP) occurs; thereby they will be initialized
to the maximum amount such that FP at the beginning is zero. The points
where FP is close to zero are the points where CDF is close to one because
when CDF is one it means that 100% of normal users are covered.

2. The control unit monitors all established connections for duration of so
called “score interval” (e.g., one minute) and then computes the score for
each established connection based on the baseline point for that interval.

3. The control unit starts dropping connections from the connection which
have the lowest score. It continues dropping connections until either no
connections with negative scores remain (considering the rules) or the load
of bottleneck resource(s) returns below threshold1.

4. If no bottleneck resource is in the red state, the server exits the freeze
mode. If the state of at least one bottleneck resource is in the yellow state,
the control unit still calculates scores for the connections and waits for new
connections.

5. If the state of all bottleneck resources returns to the green state, the control
procedure is terminated.

6. If at least one of the bottleneck resources is in the red state and there are
no connections with negative scores smaller than drop threshold (e.g., -10),
the control unit changes the baseline point appropriately. For all attributes
except attributes of “downtime” and “source IP address distribution”, the
baseline point is changed as follows: suppose in the CDF function of an
attribute, (xb, yb) and (x′

b, y
′
b) shows the current and next baseline points,

respectively. For the next base-line point, the control unit decreases yb by
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a ∆y. So, we have

y′b = yb −∆y ⇒ x′
b = f−1(yb −∆y) (5)

The amended baseline point, i.e. the next base-line point would be (f−1(yb−
∆y), yb−∆y). The amount6 of ∆y is considered appropriately, for instance,
0.1 or 0.05. For the attribute of “downtime” the calculation is similar,
but the direction is opposite. In other words, for this attribute, we have
(x′

b, y
′
b) = (f−1(yb +∆y), yb +∆y). For the attribute of “source IP address

distribution”, there is no baseline point and the scores are calculated as
before.

7. The algorithm returns to step 2. This loop is continued until the condition
of step 5 is succeeded.

Figure 2 illustrates the control unit. Below, we address some additional
issues of the control unit.

 Current status of 

bottleneck resources 

 

Monitor unit  
Calculate baseline 

points for attributes 

x 

y 

y′ 

x′ 

CDF for Ai 

Reference 

profile Calculate Scores 

Attributes Score 

A0 0 

A1 -8 

A2 -7.5 

A3 -14 

A5 0 

… … 

 

Established 

connections 

Sort scores from lowest to 

largest 

Connections Score 

C1 -55 

C2 -46 

C3 -17 

C4 -9 

C5 -6.2 

C6 -0.5 

C7 0 

C8 0 

… … 

 

 + 
Connection score 

Keep 

For drop 

Send CAPTCHA test 

Fig. 2 The control unit

– It is not required that at each iteration of the loop, baseline points for
all attributes are changed. Sometimes, the control unit may only change
baseline points for some attributes and not for all. For instance, in an
iteration of the loop, the control unit may not change the baseline point
for attributes of “uptime” and “downtime”.

6 The amount of ∆y (0.1, 0.05, 0.02, etc.) is chosen based on the response time within
which the system shall be stabilized (the attack is controlled and the load of bottleneck
resource returns below threshold 2). If a big value is chosen for ∆y (e.g., 0.15, or 0.1), the
system is stabilized faster, but the percentage of false positives is increased. In contrast, if
a small value is selected for ∆y (e.g., 0.02, or 0.05), the system is stabilized slower, but the
percentage of false positive would be low.
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– When a connection is dropped, the IP address of the connection within its
score is recorded in a list which is called blacklist.

– When some connections have the same scores, we can randomly select
which one is dropped first. However, we can also consider some prefer-
ences, for instance, the score of request rate and download rate is more
significant than score of other attributes for dropping. Other preferences
can be discussed.

– A server can select a suitable “drop threshold” before the attack time
based on the maximum absolute value of negative scores that legitimate
connections may get.

– We note that according to rule 2, if a user has negative score larger than
drop threshold (-10) and could solve the CAPTCHA test is not dropped.
The question is whether we should worry about the attackers who have
score larger than drop threshold and could break the CAPTCHA tests
(solve these tests)? The answer is we are not worried about such cases
because these attackers get negative score lower than the drop threshold
in the next “score intervals” due to their behavior and thereby without
CAPTCHA tests are dropped.

3.5 Management of the bottleneck resource(s)

When the state of a bottleneck resource reaches threshold1, the victim server
goes to the freeze mode. In this case, we expect all established connections get
services without performance degradation. But, as the state of the bottleneck
resource(s) is in the threshold level, if established malicious connections re-
quest further services, the bottleneck resource(s) is exhausted. Unfortunately,
exhaustion of the bottleneck resource(s) during the attack increases uptime of
legitimate users abnormally. In fact, due to the limitation of the bottleneck
resource(s), legitimate users should stay more on-line to get services. On the
other hand, exhaustion of the bottleneck resource(s) may cause disconnecting
of several legitimate users. This causes some legitimate users have an abnor-
mal downtime attribute as well. Abnormal uptimes and downtimes lead to
abnormal increase in the percentage of false positives.

In order to handle the above problem, we should manage the bottleneck
resources carefully such that the established legitimate connections could get
services without performance degradation. Hence, we avoid abnormal upti-
mes and downtimes. The max-min fairness method is a simple and effective
method to manage a bottleneck resource during the attack time. The max-
min fairness is the problem of dividing a scarce resource among a set of users,
each of whom has an equal right to the resource, but some of whom intrin-
sically demand fewer resources than others. How, then, should we divide the
resource? Intuitively, a fair share allocates a user with a “small” demand what
it wants, and evenly distributes unused resources to the “big” users. Consider
a set of users 1, ..., n that have resource demands x1, x2, ..., xn. Without loss
of generality, order the users demands so that x1 ≤ x2 ≤ ... ≤ xn. Let the
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capacity of the bottleneck resource is C. Then, we initially give C/n of the
resource to the user with the smallest demand, x1. This may be more than
what user 1 wants, perhaps, so we can continue the process. The process ends
when each user gets no more than what it asks for, and, if its demand was
not satisfied, no less than what any other user with a higher index got. Such
resource allocation is called a max-min fair allocation, because it maximizes
the minimum share of a user whose demand is not fully satisfied. Combination
of the freeze mode and the max-min fairness algorithm guarantee that estab-
lished legitimate connections get services without performance degradation
and consequently, abnormal uptimes and downtimes are not concern issues.

3.6 Flash crowd versus application-layer DDoS attacks

Flash crowd is the sudden increase of workload in a server when many legit-
imate users simultaneously (or in a short time) connect to the server. Flash
crowds are quite similar with application-layer DDoS attacks in terms of net-
work anomaly and traffic phenomenon. In spite of these similarities, there
are several significant differences between them such that an application-layer
DDoS attack can easily be recognized from a flash crowd. The differences are
as follows: (1) Users of flash crowd have same attributes of normal users; while
attributes of attackers significantly differ from attributes of normal users. (2)
A flash crowd happens when a server provides a new and attractive event
(e.g., a breaking news story) for users. For instance, on September 11, 2001, a
flash crowd happened for the CNN website. As another example, the vote for
the host of the 2008 Olympic Games caused a flash crowd. In fact, a server
can predict the happening of a flash crowd, while a DDoS attack may hap-
pen anytime unpredictably. (3) The duration of flash crowds is short. In fact,
users of flash crowds have shorter uptime than normal users during normal
times. The reason is that users of flash crowds leave the server upon acquiring
their interest object from the server. For instance, when a user downloaded
the page related to the breaking news story and read it, he leaves the server
immediately. However, in DDoS attacks, attackers stay on-line for long time
and uninterruptedly consume resources of the server. (4) Users of flash crowds
normally have the same request, for instance request to download the page
related to the breaking news. While in a DDoS attack, attackers have different
and various requests. Table 1 summarizes the differences between flash crowds
and application-layer DDoS attacks.

Several techniques have been invented for handling flash crowds [7,30,24].
However, as the attributes of users in a flash crowed completely differ from
the attributes of users of an application-layer DDoS attack, those techniques
cannot handle the problem of application-layer DDoS attacks.
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Table 1 Summarizing differences between flash crowds and application-layer DDoS attacks

Index Item Flash crowds Application-layer
DDoS attacks

1 Attributes of legiti-
mate users

Yes No

2 Uptime Short Long
3 Target requests Identical Random
4 Time of occurrence When a new and at-

tractive event happens
Anytime

5 Scattering Typically, uniformly
distributed across the
world

Typically, cumulated
in some locations

3.7 Page popularity and the reaction of attackers

For measuring popularity of pages7, a server selects random users at random
times and then for a specific duration (e.g., two minutes) measures page pop-
ularity. The selected users must have the following conditions.

– The selected user should have a normal and common uptime.
– According to the attribute of “downtime”, a reappeared user is not selected

and if such user had already been selected for measuring page popularity,
the associate measuring regarding that user is undone.

– The selected user should not have requested repetitive pages.

For classification, we act as follow. The pages that are never appeared for
measurement or their popularity is below a specific threshold (e.g., Thd1) are
considered for class 1 (very low popular pages). The pages that their popularity
is between Thd1 and Thd2 are considered for class 2. Similarly, the pages that
their popularity is between Thdi−1 and Thdi are considered for class i. The
popularity of the pages of class i is greater than the popularity of the pages
of class j when i > j. The values of Thd1, Thd2, Thd3, etc., are determined
based on the server’s experience from several days. These threshold rates are
fixed and do not change.

Now, the question is whether an attacker can infect page popularity and
falsely increase popularity for certain pages. In this case, the attacker may
escape from getting negative score for the attribute of “page popularity”. For
answer to this question, let us first explain two types of http flood attack.

A common attack: this attack is the most common attack that attackers
use. In this attack, a zombie machine sends requests to the server at a high
rate. The request rate of zombie machines is higher than the request rate of
normal users.

7 Some websites show the most popular and most recently read pages to the public. Such
websites cannot use the ConnectionScore technique for handling application-layer DDoS
attacks because one of the most important attribute is revealed for the attackers. We hope
the websites that want to use the ConnectionScore technique do not show such information
to the public.
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A meek attack: this attack is a more sophisticated attack where zombie
machines send requests to the server at the rate of normal users and also
downloads from the server at the rate of normal users.

For a common attack, an attacker needs only a small number of zombie ma-
chines; while for a meek attack, the attacker needs numerous zombie machines.
As we show in Section 5, a common attack can be treated using attributes such
as “request rate” and “download rate”; thereby there is no need for attribute
“page popularity” for handling this attack. But, the attribute of “page popu-
larity” is an effective remedy for a meek attack. Now, let us explain whether
in a meek attack, an attacker can infect the page popularity before the attack
time.

When the attack is started, the attribute of “downtime” assigns negative
scores to the connections which appeared before the attack. Consequently, if an
attacker, before the attack time, uses a set of zombie machines to change the
page popularity, he cannot use them for the attack; so, the attacker misses a
fraction of its zombie machines for the attack. Another point is that the server
selects random users at random times for measuring page popularity, and
moreover, the selected users must have the above mentioned conditions. These
will increase difficulties for an attacker to change page popularity. To change
page popularity in a somewhat range, an attacker must continually activate
new zombie machines several hours before the attack time. As, the attacker
needs numerous zombie machines to handle a meek attack, it is unlikely that
an attacker has enough zombie machines for both the meek attack and page
popularity infection. However, suppose that an attacker has some extra zombie
machines further than the zombie machines that he needs for the meek attack.
For instance, suppose that an attacker has enough extra zombie machines such
that continually activate new zombie machines to connect to the server in the
order of 10% of the normal arrival rate from several hours prior the attack
time. For instance, if 200 normal users connect to the server every minute, we
assume that an attacker activates 20 zombie machines at every minute several
hours before the attack to infect the page popularity.

An attacker does not know (1) which zombie machines are selected for
sampling, (2) at which time the sampling is taken (for instance if a zombie
machine has been selected, the attacker does not know the machine is in the
first minute of its uptime, the second minute of its uptime, etc.) and (3) what
the range of threshold is for a specific class. Hence, the attacker must select
limited number of random pages and ask zombie machines of every round to
send requests for them. As mentioned above, 90% of requests of normal users
are for only 10% of pages. So, about 90% of pages of a web-site belong to
low popular classes. Hence, it is very likely that the pages which the attacker
selects for popularity changing are selected from this 90 percent.

In fact, the attacker may can falsely generate popularity for only limited
number of random pages of low popular classes and force the server to classify
them for higher popular classes. From the experience that a server has from
several days, it knows the estimated relative population of each class. When
an attacker infects the page popularity, the server can observe the population
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of some classes has been changed. For instance, it observes that the popula-
tion of a low popular class decreases, while the population of a high popular
class increases because the attacker could falsely increase popularity for some
pages of a low popular class and transfers those pages to a higher popular
class. As discussed above, the threshold rates of classes are fixed. In this case,
transferring some pages from a lower popular class to a higher popular class
may increase the percentage of false positive. For instance, suppose, before the
infection, the population of class i and j (i > j) is 150 and 1000 pages, respec-
tively, and the threshold rate for these two classes is 3% and 20%, respectively.
Due to the infection of an attacker, 80 pages of class j move to class i (see
Figure 3). The probability of false positive is increased because the pages of
class j for which normal users may send requests, now have been moved to
class i and as the threshold rate of class i is the same as before, the percentage
of false positive increases. To handle this challenge, we increase the threshold
rate for class i proportional to the number of pages that has been moved to it
and the population of the source class. For example in our example, we change
the threshold rate for class i from 3% to 11% (0.03 + 80/1000).
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Fig. 3 The attacker can transfer some pages from a low popularity class to a higher popu-
larity class by infecting the page popularity.

Now, the question is if the attacker sets zombie machines to only send
requests for these specific pages (in our example, these 80 pages), then whether
zombie machines can escape from negative score of the attribute of “page
popularity”. The answer is “no”; they cannot escape because the attacker does
not know the threshold rate of classes and he does not know in which class or
classes these specific pages have been located. So, if a zombie machine sends
100% of its requests for these specific pages, surely it exceeds the threshold
rate of a class and gets negative score. However, if zombie machines only send
requests to a specific set of pages, we can handle the problem with the following
further solutions.

Solution 1: It is important to know that by using the attribute of “arrival
rate”, a victim server can detect that an attacker is infecting the page popu-
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larity. Secondly, as 90% of pages are low popular, the victim server knows that
the attacker selects 90% of pages for generating falsely high popular pages from
these low popular pages. Now, we can use these falsely high popular pages as
a decoy to detect attackers. For instance, suppose an attacker could generate
falsely high popularity for 80 pages and zombie machines send most of their
requests for these pages. Also assume that there are 10000 zombie machines
during the attack time. When the server sees that 10000 machines send request
for 80 specific pages, it can understand that these 80 pages are false negative
high popular pages and the requesters for those pages are attackers.

Solution 2: when the server sees that a large number of users send requests
for specific number of pages, the server can use the technique of “multicasting”
for replying to these users instead of a unicast reply to each user. For instance,
suppose 10000 users send requests for 80 pages during a short time, i.e., every
page has request from 125 users. Suppose that the size of each page is 100
kB equivalent to 70 packets (size of each packet is 1500 bytes). With unicast
replying, the server should send out 700000 packets to these 10000 users; while
with multicasting replying, the server needs to send out 8000 packets (note
that in the multicasting packets 500 bytes is used for inserting IP address of
125 users). In fact, the bandwidth required for multicasting technique is 87.5
times less than the bandwidth required for unicasting technique.

Solution 3:, we can handle the attack through the techniques which have
been proposed for flash crowd. In fact, when request rate for particular pages
is increased, the problem can be viewed as a flash crowd problem because in a
flash crowd, most users send requests for a specific set of pages. The idea is that
during the attack time, the server copies a version of the pages which have high
request onto spare servers. Then, when it receives a request for these pages,
it redirects the request for the corresponding spare server. The corresponding
spare server sends the page for the user using the source IP address of the main
server (i.e., it inserts the IP address of the main server in the source IP address
of the packets). This idea is well-known as dynamic resource allocation which
is used for handling flash crowds [7,30]. Multiple spare servers are free and idle
servers that can be allocated dynamically to any application when the need
arises [7,30]. We assume enough spare servers are available. It is worth noting
that this is an evident assumption for several flash crowd countermeasures [7,
30]. A combination of this technique and “multicasting” technique can be
considered also as a solution.

In this case, the attacker has two ways: a) he can still ask zombie machines
to send requests for falsely high popular pages, b) he can ask zombie machines
to send requests for other pages. In the former one, all or a large fraction of
attackers’ requests is redirected (and distributed) to multiple spare servers,
or is answered by multicasting or is handled by combination of multicasting
and dynamic resource allocation. Consequently, the load on the victim server
falls below the threshold and the server exits the freeze mode and accepts
new connections. In fact, DoS attack is controlled. Furthermore, if even zom-
bie machines could escape from getting negative score of attribute of “page
popularity”, when the timeout of the attribute of “uptime” arrived, they get
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negative score of this attribute and are dropped. In the latter case, malicious
connections get negative score of the attribute of “page popularity” with high
probability as they send requests for random pages. We note that malicious
connections may get negative score of other attributes such as “hyper fraction
click”, “hyper depth”, “source IP distribution”, etc. Consequently, we expect
after elapsing few “score intervals”, most malicious connections are dropped.

In summary, we indicate that (1) in a meek attack, the attacker has negli-
gible chance to infect page popularity, as the attacker needs numerous number
of zombie machines for the attack; (2) even if the attacker has some extra
zombie machines further than the number of zombie machines that he needs
for the meek attack, he can change the popularity of only few pages as the
server utilizes some rules for measuring page popularity; (3) even the attacker
changes popularity for some pages, he cannot escape from getting negative
score of the attribute of “page popularity” as he does not know the threshold
rate of classes; (4) if zombie machines send requests for only specific set of
pages, the problem can be handled using “multicasting technique”, “dynamic
resource allocation techniques” or a combination of both.

4 Analyzing attributes for a case study

This section studies and analyzes the nature of the distribution of the men-
tioned attributes for a real case-study in the Internet: real-life traces collected
from the traffic archive of ClarkNet WWW server. The traces contain two
week’s worth of all HTTP requests to this web server. Traces are available
on-line8.

Request rate

Figure 4.a shows the cumulative distribution function for request rate where
Y-axis shows CDF and X-axis shows request rate per second. As can be seen
more than 50% of users have request rate per second less than 0.066. It means
that more than 50% of users have sent a request to the server every 15 seconds.
Moreover, more than 80% of users have request rate per second less than 0.25.
As the figure shows about 10% of users have sent more than one request every
two seconds. Our analysis also shows that the average, the standard deviation,
the minimum rate and the maximum rate for this attribute are 0.18, 0.37,
0.0026 and 0.8, respectively. For this case study, we suggest (xb, yb) = (0.5, 0.9)
as an initial base-line point.

Download rate

Figure 4.b shows CDF for download rate. As the figure shows, more than 50%
of normal users have a download rate of less than 1000 bytes per second. More

8 http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html
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Fig. 4 Cumulative distribution function: a) request rate/second, b) download rate/second

than 80% of users have a download rate less than 3000 bytes per second. More-
over, only 10% of users have download rate more than 6000 bytes per second.
The average, the standard deviation, the minimum rate and the maximum rate
for this attribute are 2283, 3870, 63 and 15611 bytes per second, respectively.
We suggest (xb, yb) = (6000, 0.9) as an initial base-line point of this attribute
for this case-study.

Uptime

Figure 5.a depicts CDF for uptime of normal users where Y-axis shows CDF
and X-axis shows uptime in the range of minutes. As can be seen about 54% of
users have stayed online for less than 1.5 minutes. About 80% of users have an
uptime less than 5 minutes and only 4% of users have an uptime more than 16
minutes. Our measurements show that normal users of this WWW server have
the following average, standard deviation, minimum rate and maximum rate
for uptime: 3.45, 6, 0.14 and 80 minutes, respectively. The point of (10, 0.9) can
be considered as an initial base-line point for this attribute in this case-study.
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Fig. 5 Cumulative distribution function: a) Uptime, b) Downtime
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Downtime

Figure 5.b illustrates CDF for downtime of those normal users that more than
once in two consecutive days have established a connection with the server.
As can be seen more than 50% of those normal users have a downtime more
than 8 hours and more than 80% have a downtime more than 4 hours. Our
analysis shows that only 0.3% of users have downtime less than one hour. The
average, the standard deviation, the minimum value and the maximum value
for this attribute are 12.34, 8.43, 0.25 and 23 hours, respectively. The point of
(3, 0.1) can be considered as an initial base-line point for this attribute.

Browsing behavior

Page popularity

Figure 6 shows distribution of page popularity for day 3 between 11:00 to
14:00 o’clock. As discussed above, we divide pages based on their popularity
into five major categories: very low, low, medium, high and very high popular
pages. Next, for more accuracy, any of the above major categories may divided
into some smaller classes. Figure 6 shows that pages of class 1 compose very
low popular class; pages of classes 2 and 3 compose low popular class; pages of
classes 4 to 12 compose medium popular class and finally pages of classes 13
to 17 and 18 to 19 compose high and very high popular classes, respectively.
In Figure 6, popularity of class i is more than class j when i > j.
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Fig. 6 Frequency rate of page popularity (different classes)

Figure 7.a shows the threshold rate (percentage) for different classes based
on CDF of 90% to 95% (depending on the class) for four different days. In
other words, Figure 7.a represents that for example the percentage of total
requests of 95% of users for a specific class is below the determined threshold
rate for that class. As can be seen, the threshold rate of a specific class is in
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a similar range for different days. So, we can determine an upper bound and
fixed threshold rates for classes independent from days.
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Fig. 7 a) Threshold rate for popularity classes, b) Cumulative density function for hyperlink
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Hyperlink depth (D)

Figure 7.b shows CDF for the attribute “hyperlink depth”. As can be seen the
hyperlink depth of only 10% of users is more than 3. Moreover, less than 1%
of users proceed in the depth of the web-site more than 5. We can consider
the point of (4, 0.95) as an initial base-line point.

Source IP address distribution

Figure 1.a shows source IP distribution for duration of 5 minutes of day 6. As
can be seen, users are scattered uniformly across the Internet.

Arrival distribution rate of users

Figure 8.a and 8.b shows arrival distribution rate for day 1 and day 12, re-
spectively. As can be seen arrival rate is different for different times a day.
In both days, the arrival rate after mid-night between 01:00 to 07:00 is lower
than other parts of day. The average arrival rate in this period of day is about
8 users per minute. The arrival rate between 11:00 to 16:00 is in the maximum
state. The average arrival rate for this period of the day is about 27 users per
minute. As can be seen in the maximum case less than 50 users have connected
to the server during a minute; in other words, less than one user per second.
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This attribute indicates that if at a second, several users (e.g., 200 users) sud-
denly connect to the server and server goes to warning state, most of those
users belong to an adversary and false positive is about only one legitimate
user. Such argument can be considered for duration of one minute and also
false positive for that duration also can be estimated.
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Fig. 8 Arrival distribution rate: a) day 1, b) day 12

5 Experimental results

To evaluate the effectiveness of the ConnectionScore scheme, we set up some
experiments on the Emulab environment. In these experiments, we simulate
day 6 of the Clarknet www server. We generate 3559 pages with different sizes
according to distribution of file sizes of day 6 before 14:00 o’clock and then
upload them in the server. A machine with 1.7 GHz, Pentium IV and 512 MB
RAM plays the role of the Clarknet www server. In the experiments, legitimate
clients follow all attributes of the real users of the Clarknet www server. We
assume that the attack is started at time 14:03. We set the bandwidth of the
server to 106 bytes per second.

Performance metrics: we are interest to see 1) score distribution of
connections, 2) how fast the server can recover from the attack, 3) percentage
of false positive and false negative, 4) percentage of candidate connections for
false positive and 5) percentage of the legitimate connections that get negative
scores (RL) and also percentage of the malicious connections that do not get
negative scores (RA).

Parameters of the experiments: we set “drop threshold” to −10 and
“score interval” to 1 minute. In these experiments, we assume that attackers
are clever enough to avoid sending requests for repetitive pages and out-of-
time pages. We also assume that attackers follow sequential-hyperlink pages
correctly. In fact, we do not consider the above attributes in calculating the
scores.

We evaluate the scheme against two types of attacks: 1) common attacks
and 2) meek attack. For the common attack, we follow a real scenario to model
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this attack which has been represented in [27,15]. In this scenario, attackers use
three viruses programs: Netsky.Q, Trojan Sientok and BlueCode.Worm to send
HTTP GET requests to the server. These virus programs send the requests in
about 300 milliseconds, 250 milliseconds and 137 milliseconds, respectively. In
this experiment, 150 machines play the role of attackers. For the meek attack,
600 attackers create TCP connection and follow attributes of request rates
and download rates of legitimate clients. In other words, request rates and
download rates of attackers are in the order of legitimate users.

Figure 9.a and 9.b show the score distribution for established connections
when the server is under the common attack and the meek attack, respectively.
Red bars show the score of malicious connections and green bars show the score
of legitimate connections. As can be seen, about 25% of legitimate connections
get negative score, but with small absolute values (maximum 11). In the com-
mon attack, the almost malicious connections get high negative scores (i.e.,
negative scores with high absolute values). The reason is that users’ high re-
quest rate leads to high negative values in most of attributes. We observe that
the largest and the lowest negative score in the common attack are −7485.65
and −2.60E + 06, respectively. In the meek attack, all malicious connections
do not get negative scores and moreover, the absolute value of negative scores
is much lower than the common attack. We observe that the largest and the
lowest negative score in the meek attack are 0 and −2585.3, respectively. 
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Fig. 9 Score distribution: a) common attack and b) meek attack

Figure 10 shows the bandwidth occupied by legitimate traffic and attack
traffic during the meek attack (for the common attack we have the similar
situation). At time 14:03, the attack is started and the server goes to the
freeze mode. One minute (score interval) after starting the attack, the control
unit drops enough number of connections with negative scores such that the
bandwidth rate drops below threshold1. At this time (14:04) the server exits
the freeze mode and accepts the new connections. The control unit replaces
the established connections with the lowest score by new connections until
the bandwidth drops below threshold2. Then the duty of the control unit
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Table 2 Performance metrics (FP, FN, PFP, RL and RA) for both common and meek
attack

FP FN PFP RL RA

Common 0 0 2% 24% 0
Meek 0 6.3% 2% 24% 6.3%

terminates. During 14:03 and 14:04, the bandwidth rate of good traffic slowly
decreases because some legitimate users normally leave the system (remember
uptime).
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Fig. 10 Bandwidth rate occupied by good traffic and attack traffic

To calculate the percentage of false positive (FP), false negative (FN),
the percentage of legitimate connections for possible false positive (PFP), RL

and RA, we repeat the experiments 30 times during different times of a day.
Table 2 summarizes the results. As can be seen, there is no false positive in
both common and meek attack. On average 6.3% of malicious connections
do not get negative score in the meek attack; while all malicious connections
get negative score in the common attack. So, the percentage of false negative
and RA is 6.3%. On average 24% of legitimate connections get negative score.
Finally, on average, 2% of legitimate connections get score lower than -10 (the
drop threshold); thereby, 2% of legitimate connections could be candidate for
possible drop without asking them to solve the CAPTCHA tests.

6 Conclusion

This paper proposes a new countermeasure against application-layer DDoS
attacks that is called ConnectionScore technique. In this scheme, connections
get score based on their behavior. With a high probability, the connections
which get lower scores are malicious connections; thereby the server retakes
bottleneck resources from them. The ConnectionScore technique is evaluated
using Emulab testbed for two types of attacks: common and meek attacks. The
results indicate that the technique can handle both common and meek attacks
effectively. Although the results show that 24% of legitimate connections get
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negative scores, the percentage of false positive for both common and meek
attacks is zero. Our results show that all malicious connections get negative
scores with high absolute value in common attacks while in meek attacks, on
average 6.3% of malicious connections do not get negative scores. We believe
that the administrators of web-sites do not need to annoy users by forcing them
to solve CAPTCHA tests. The ConnectionScore scheme can be effectively con-
sidered as an alternative technique to handle application-layer DDoS attacks.
Other efficient attributes for calculating scores can be investigated in future
work.
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